1,624 research outputs found

    Reactive control of autonomous drones

    Get PDF
    Aerial drones, ground robots, and aquatic rovers enable mobile applications that no other technology can realize with comparable flexibility and costs. In existing platforms, the low-level control enabling a drone's autonomous movement is currently realized in a time-triggered fashion, which simplifies implementations. In contrast, we conceive a notion of reactive control that supersedes the time-triggered approach by leveraging the characteristics of existing control logic and of the hardware it runs on. Using reactive control, control decisions are taken only upon recognizing the need to, based on observed changes in the navigation sensors. As a result, the rate of execution dynamically adapts to the circumstances. Compared to time-triggered control, this allows us to: i) attain more timely control decisions, ii) improve hardware utilization, iii) lessen the need to overprovision control rates. Based on 260+ hours of real-world experiments using three aerial drones, three different control logic, and three hardware platforms, we demonstrate, for example, up to 41% improvements in control accuracy and up to 22% improvements in flight time

    HETE-II and the Interplanetary Network

    Get PDF
    The FREGATE experiment aboard HETE-II has been successfully integrated into the Third Interplanetary Network (IPN) of gamma-ray burst detectors. We show how HETE's timing has been verified in flight, and discuss what HETE can do for the IPN and vice-versa.Comment: To appear in the proceedings of the conference on Gamma-Ray Burst and Afterglow Astronomy 2001: A Workshop Celebrating the First Year of the HETE Mission, to be published by AIP. Figures must be downloaded and printed separatel

    WASP-4b Arrived Early for the TESS Mission

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) recently observed 18 transits of the hot Jupiter WASP-4b. The sequence of transits occurred 81.6 ±\pm 11.7 seconds earlier than had been predicted, based on data stretching back to 2007. This is unlikely to be the result of a clock error, because TESS observations of other hot Jupiters (WASP-6b, 18b, and 46b) are compatible with a constant period, ruling out an 81.6-second offset at the 6.4σ\sigma level. The 1.3-day orbital period of WASP-4b appears to be decreasing at a rate of P˙=12.6±1.2\dot{P} = -12.6 \pm 1.2 milliseconds per year. The apparent period change might be caused by tidal orbital decay or apsidal precession, although both interpretations have shortcomings. The gravitational influence of a third body is another possibility, though at present there is minimal evidence for such a body. Further observations are needed to confirm and understand the timing variation.Comment: AJ accepte

    HETE Observations of the Gamma-Ray Burst GRB030329: Evidence for an Underlying Soft X-ray Component

    Full text link
    An exceptionally intense gamma-ray burst, GRB030329, was detected and localized by the instruments on board the High Energy Transient Explorer satellite (HETE) at 11:37:14 UT on 29 March 2003. The burst consisted of two \~10s pulses of roughly equal brightness and an X-ray tail lasting >100s. The energy fluence in the 30-400 keV energy band was 1.08e-4 erg/cm2, making GRB030329 one of the brightest GRBs ever detected. Communication of a 2 arcmin error box 73 minutes after the burst allowed the rapid detection of a counterpart in the optical, X-ray, radio and the ensuing discovery of a supernova with most unusual characteristics. Analyses of the burst lightcurves reveal the presence of a distinct, bright, soft X-ray component underlying the main GRB: the 2-10 keV fluence of this component is ~7e-6 erg/cm2. The main pulses of GRB030329 were preceded by two soft, faint, non-thermal bumps. We present details of the HETE observations of GRB030329.Comment: 22 pages, 5 figures, to be published in ApJ 617, no. 2 (10 December 2004). Referee comments have been incorporated; results of improved spectral analysis are include

    Global Characteristics of X-Ray Flashes and X-Ray-Rich GRBs Observed by HETE-2

    Get PDF
    We describe and discuss the global properties of 45 gamma-ray bursts (GRBs) observed by HETE-2 during the first three years of its mission, focusing on the properties of X-Ray Flashes (XRFs) and X-ray-rich GRBs (XRRs). We find that the numbers of XRFs, XRRs, and GRBs are comparable. We find that the durations and the sky distributions of XRFs and XRRs are similar to those of GRBs. We also find that the spectral properties of XRFs and XRRs are similar to those of GRBs, except that the values of the peak energy EpeakobsE^{\rm obs}_{\rm peak} of the burst spectrum in νFν\nu F_\nu, the peak energy flux \Fp, and the energy fluence SES_E of XRFs are much smaller -- and those of XRRs are smaller -- than those of GRBs. Finally, we find that the distributions of all three kinds of bursts form a continuum in the [SES_E(2-30 keV),SES_E(30-400) keV]-plane, the [SES_E(2-400 keV), EpeakE_{\rm peak}]-plane, and the [FpeakF_{\rm peak}(50-300 keV), EpeakE_{\rm peak}]-plane. These results provide strong evidence that all three kinds of bursts arise from the same phenomenon.Comment: 33 pages, 15 figures, submitted to Ap

    Current Flow and Pair Creation at Low Altitude in Rotation Powered Pulsars' Force-Free Magnetospheres: Space-Charge Limited Flow

    Get PDF
    (shortened) We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of Rotation Powered Pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We observe novel behavior. a) When the current density is less than the Goldreich-Julian (GJ) value (0<j/j_{GJ}<1), space charge limited acceleration of the current carrying beam is mild, with the full GJ charge density being comprised of the charge density of the beam, co-existing with a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are on the order of mc^2/e, and pair creation is absent. b) When the current density exceeds the GJ value (j/j_{GJ}>1), the system develops high voltage drops, causing emission of gamma rays and intense bursts of pair creation. The bursts exhibit limit cycle behavior, with characteristic time scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). c) In return current regions, where j/j_{GJ}<0, the system develops similar bursts of pair creation. In cases b) and c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady, finding that such steady flows can occupy only a small fraction of the current density parameter space of the force-free magnetospheric model. The generic polar flow dynamics and pair creation is strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage as a function of the applied current.Comment: 35 pages, 29 figures. Accepted for publication in MNRAS. Added new appendix, several minor changes in the tex
    corecore